Monatshefte für Chemie 100, 444-454 (1969)

Ternäre Erdalkali- und Seltene Erdmetall-Silicide und -Germanide mit ThCr₂Si₂-Struktur

Von

Wolfhart Rieger* und Erwin Parthé

School of Metallurgy and Materials Science, and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, USA

Mit 2 Abbildungen

(Eingegangen am 2. September 1968)

Es wurden 53 neue Verbindungen mit der Zusammensetzung $RM_2B_2^{IV}$ hergestellt, wobei R ein Selten-Erdelement, Ca oder Sr bedeutet, M eines der Elemente: Cr, Fe, Co, Ni oder Cu ist und B^{IV} entweder Si oder Ge bezeichnet. Alle Verbindungen kristallisieren im tetragonalen ThCr₂Si₂- (oder CeAl₂Ga₂-) Strukturtyp. Der letztere stellt eine geordnete ternäre Variante des BaAl₄-Typs dar, bei dem die zwei ungleichwertigen Al-Punktlagen mit verschiedenartigen Atomen besetzt sind.

Ternary Alkaline and Rare Earth Silicides and Germanides with $ThCr_2Si_2$ Structure

Fifty three new compounds of composition $RM_2B_2^{IV}$ were synthesized where R is a rare earth element or Ca and Sr, M is Cr, Fe, Co, Ni or Cu and B^{IV} either Si or Ge. All these compounds crystallize in the tetragonal ThCr₂Si₂ (or CeAl₂Ga₂) type which is an ordered ternary version of the BaAl₄ type, the two nonequivalent sites of the Al atoms being occupied by different kinds of atoms.

Einleitung

Im Rahmen von Untersuchungen an ternären Systemen, die Seltene-Erdmetalle, Silicium oder Germanium, und Kupfer enthalten, wurden mehrere neue ternäre Verbindungen gefunden. Die Verbindungen, über die

^{*} Derzeitige Adresse: Lonza A. G. in Sins, CH 5643, Schweiz.

W. Rieger u. a.: Erdalkali- u. Seltene Erdmetall-Silicide u. -Germanide 445

hier berichtet wird, enthalten 20 Atom-Prozent Selten-Erdmetall und haben die Zusammensetzung RCu_2Si_2 oder RCu_2Ge_2 . Von Raman und Steinfink¹ wurde an anderen ternären Systemen festgestellt, daß das Auftreten bestimmter Strukturen für Verbindungen mit 33 Atomprozent Selten-Erdmetall mit der Zahl der verfügbaren Valenzelektronen zusammenhängt. In dem Bestreben festzustellen, ob solche Zusammenhänge auch bei Verbindungen mit 20 Atomprozent Selten-Erdmetall existieren, haben wir auch zu RCu_2Si_2 oder RCu_2Ge_2 verwandte Verbindungen hergestellt und letztlich 53 isotype Verbindungen gefunden.

Probenherstellung

Die Proben wurden aus den Elementen in einem Lichtbogenofen unter Argon-Atmosphäre hergestellt. Die erhaltenen Schmelzproben wurden in evak. Quarzröhren bei 900° C (100 Stdn.) geglüht. Anschließend wurden die Proben gewogen, um allfällige Verluste während der Herstellung festzustellen. Alle Legierungen hatten metallischen Glanz und waren stabil an der Luft. Die Strukturaufklärung wurde mittels *Debye-Scherrer*-Aufnahmen durchgeführt. Da die Kristallstruktur sehr einfach ist und nur einen freien Atomparameter besitzt, waren die Pulveraufnahmen vollkommen ausreichend für eine genaue Strukturbestimmung.

Die Struktur von YCu₂Si₂

Das Diagramm von YCu₂Si₂ konnte mit einer raumzentrierten tetragonalen Zelle mit a = 3,967 + 0,006 Å und c = 9,959 + 0,010 Å indiziert werden. Die systematischen Auslöschungen entsprechen der Bedingung h + k + l = 2 n + 1. Die möglichen Raumgruppen sind daher I4, I4, I4/m, I422, I4mm, I42m, I4m2 und I4/mmm. Da die Gitterkonstanten. Auslöschungen und Intensitäten von YCu₂Si₂ ähnlich sind wie jene von ThCr₂Si₂, dessen Struktur von Ban und Sikirica² ermittelt wurde, war es naheliegend, den gleichen Strukturtyp anzunehmen. Eine erste Intensitätsberechnung mit Atompositionen wie bei ThCr₂Si₂, d. h. Raumgruppe I4/mmm (D¹⁷_{4h}), 2 Y in 2(a), 4 Cu in 4(d) und 4 Si in 4(e) mit $z \sim 3/8$, ergab bereits eine sehr gute Übereinstimmung zwischen beobachteten und berechneten Intensitäten. Um den z-Parameter zu schärfen, wurden Intensitäten für andere z-Werte berechnet. Die beste Übereinstimmung ergab sich für einen z-Wert von 0.375 ± 0.005 . Die beobachteten und die berechneten Werte sind in Tab. 1 zusammengestellt. Die vorletzte und die drittletzte Kolonne enthalten berechnete Intensitäten für den Fall, daß entweder Cu- und Si-Atome statistisch vermischt sind oder aber die Cu-

¹ A. Raman und H. Steinfink, Inorg. Chem. 6, 1789 (1967).

² Z. Ban und M. Sikirica, Acta Cryst. 18, 594 (1965); Croat. Chem. Acta 36, 151 (1964); Z. Anorgan. Allgem. Chem. 356, 96 (1967).

					Normal	Invers	Gemischt	
					$I_{\rm ber.}$	$I_{\rm ber.}$	$I_{\rm ber.}$	
h	k	l	$l 10^3 \cdot \sin^2 \theta_{\rm ber}$	$10^3 \cdot \sin^2 \theta_{\text{beob.}}$	2 Y in 2(a)	2 Y in 2(a)	2 Y in 2(a)	I_{beob}
					4 Cu in 4(d)	4 Si in 4(d)	4(Cu + Si) in $4(d$)
					4 Si in 4(e)	4 Cu in 4(e)	4(Cu + Si) in $4(e$	ý
0	0	2	2 52,9	52,9	8,1	3,8	0,2	ss
1	0	1	1 96,5	96,7	19,3	0,1	4,2	m
1	1	0	0 166,6		0,5	50,8	15,3	
1	0	3	3 202,2	204,0	47,6	93,6	68,7	\mathbf{mst}
0	0	4	4 211,4	211,9	17,6	0,2	5,3	s*
1	1	2	2 219,4	220,1	120,3	53,2	83,4	\mathbf{sst}
2	0	0	333,1	333,6	48,7	48,7	48,7	\mathbf{mst}
1	1	4	4 378,0	378,2	9,6	9,6	9,6	s
2	0	2	2 386,0		1,6	1,2	0,0	
1	0	5	5 413,6	413,7	15,8	30,7	22,6	\mathbf{m}
2	1	1	1 429,6	429,7	4,5	0,0	1,1	SSS
0	0	6	3 475,7		0,3	0,2	0,0	
2	1	3	3 535,3	535,6	23,9	46,2	34,2	m
2	0	4	4 544,6	545,0	18,2	0,2	5,7	m^{-}
1	1	6	6642,3	643,0	31,4	14,3	22,0	\mathbf{m}^+
2	2	0	0 666,2	667,2	25,2	25,2	25,2	\mathbf{m}
2	2	2	2 719,1		1,0	0,8	0,0	
1	0	7	7 730,8		1,7	0,0	0,4	
2	1	5	5 746,8	747,6	24,5	46,7	34,7	m
3	0	1	1 762,7		1,8	0,0	0,5	
2	0	6	808,8		1,1	0,9	0,0	
3	1	0	0 832,8		0,3	22,3	7,0	
0	0	8	8 845,7	845,4	17,0	17,0	17,0	m*
3	0	3	8 868,5	869,5	16,7	31,7	23,6	\mathbf{ms}
2	2	4	4 877,7	877,9	26,0	0,4	8,2	m
3	1	2	2 885,7	886,1	99,2	45,7	69,9	sst

Tabelle 1. Intensitätsberechnung für YCu₂Si₂ mit ThCr₂Si₂-Struktur CrKα-Strahlung

* Orientierungseffekt.

und die Si-Atome ihre Plätze wechseln. Ein Vergleich mit den beobachteten Intensitäten zeigt eindeutig, daß die YCu₂Si₂-Struktur weder invers geordnet noch gemischt ist. In Abb. 1 ist eine Projektion der YCu₂Si₂-Struktur abgebildet.

Andere isotype Verbindungen

Die YCu₂Si₂-Struktur wurde auch bei einer großen Zahl von verwandten ternären Siliciden und Germaniden aufgefunden, wobei das Yttrium durch ein Selten-Erdelement, Sc, Ca oder Sr ersetzt und Cu gegen Ni, Co, Fe oder Cr ausgetauscht ist. Die Gitterkonstanten dieser Verbindungen sind in Tab. 2 zusammengestellt. Der Vollständigkeit halber

446

H. 2/1969] Erdalkali- und Seltene Erdmetall-Silicide und -Germanide 447

haben wir in Tab. 2 auch die Daten von Ban und $Sikirica^2$ für die ternären Thorium-Silicide und -Germanide sowie die kürzlich veröffentlichten

Abb. 1 a

Abb. 1 b

Abb. 1. Projektion der Struktur von YCu₂Si₂

Ergebnisse für ternäre Selten-Erdmetall-Silicide von Bodak, Gladyshevskii und $Kripyakevich^3$ angeführt. Alle Verbindungen kristallisieren im

³ O. I. Bodak, E. I. Gladyshevskii und P. I. Kripyakevich, Izvest. Akad. Nauk SSSR Neorg. Mater. 2, 2151 (1966).

M Zusammensetzung		a (Å)	c (Å)	c/a	V (Å ³)	Lit.
Cr	GdCr ₂ Si2	3.944	10.672	2,706	166.0	*
01	$\mathrm{Th}\mathrm{Cr}_2\mathrm{Si}_2$	4,043	10,577	2,617	172,9	2
Mn	LaMnaSia	4 105	10.642	2,593	179.3	3
14111	CeMnaSia	3 982	10,012	2,619	165.4	3
	ThMn Sie	4 021	10,493	2,610	169 7	2
	$\mathrm{UMn_2Si_2}$	3,917	10,274	2,623	157,6	2
Fe	CeFe ₂ Si ₂	3.995	9.876	2,472	157,6	*
		3,986	9,871	2,476	157.1	3
	GdFe ₂ Si ₂	3.940	9.974	2,531	154.8	*
	ThFe ₂ Si ₂	4,038	9,820	2,430	160,1	2
	$\mathrm{UFe_2Si_2}$	3,974	9,537	2,400	150,6	2
Co	CeCo ₂ Si ₂	3,962	9,795	2,473	153,7	*
		3,957	9,783	2,472	153,5	2
	GdCo ₂ Si ₂	3,913	9,811	2,507	150,2	*
	ThCo2Si2	4.015	9,760	2,435	157,3	3
	$\mathbf{UCo}_2\mathbf{Si}_2$	3,905	9,634	2,467	146,9	2
Ni	CaNi ₂ Si ₂	3,993	9,714	2,433	154,9	*
	ScNi ₂ Si ₂	3,806	9,579	2,517	138,8	*
	YNi2Si2	3,956	9,535	2,410	149,2	*
		3,95	9,53	2,41	149	19
	$LaNi_2Si_2$	4,103	9,698	2,363	163, 3	3
	CeNi ₂ Si ₂	4,036	9,608	2,381	156, 5	*
		4,027	9,557	2,373	155,0	3
	$PrNi_2Si_2$	4,043	9,619	2,379	157,2	3
	$NdNi_2Si_2$	4,022	9,598	2,386	155,3	3
	$\mathrm{SmNi}_2\mathrm{Si}_2$	3,997	9,577	2,396	155,0	3
	"EuNiSi3"**	4,143	9,625	2,323	165,2	3
	GdNi ₂ Si ₂	3,977	9,557	2,403	151,2	3
	TbNi ₂ Si ₂	3,952	9,542	2,415	149,0	3
	$DyNi_2Si_2$	3,938	9,532	2,421	147,8	3
	$HoNi_2Si_2$	3,938	9,527	2,419	147,7	3
	$ErNi_2Si_2$	3,924	9,532	2,429	146,8	3
	$\mathrm{TmNi}_2\mathrm{Si}_2$	3,914	9,516	2,431	145,8	3
	$YbNi_2Si_2$	3,900	9,513	2,439	144,8	3
	$LuNi_2Si_2$	3,905	9,495	2,431	144,8	3
	$\mathrm{ThNi_2Si_2}$	4,076	9,551	2,343	158,7	2
	${ m UNi}_2{ m Si}_2$	3,961	9,517	2,403	149,3	2

Tabelle 2. Gitterparameter, c/a-Verhältnis und Zellvolumen der ternären Silicide und Germanide mit ThCr₂Si₂-Struktur

Silicide RM₂Si₂

* Diese Arbeit; Fehlergrenzen für $a \pm 0,006$ und für $c \pm 0,010$ Å. ** So ist die Zusammensetzung l. c. angegeben.

448

Fortsetzung (Tabelle 2)						
ΜZ	usammensetzung	a (Å)	c (Å)	c/a	V	Lit.
Cu	$CaCu_2Si_2$	4,057	9,902	2,441	163,0	*
	YCu_2Si_2	3,967	9,959	2,511	156,7	*
	$LaCu_2Si_2$	4,153	9,918	2,388	171,1	*
		4,143	9,914	2,410	170,2	3
	$CeCu_2Si_2$	4,105	9,933	2,420	167,4	*
		4,103	9,986	2,433	168, 6	3
	$PrCu_2Si_2$	4,086	9,929	2,430	165,7	*
	$\rm NdCu_2Si_2$	4,064	9,926	2,442	164,0	*
	$\rm SmCu_2Si_2$	4,025	9,928	2,466	160,9	*
	$GdCu_2Si_2$	4,003	9,947	$2,\!487$	159,4	*
	${ m TbCu_2Si_2}$	3,980	9,966	2,504	157,9	*
	$\mathrm{DyCu}_2\mathrm{Si}_2$	3,964	9,982	2,518	156,9	*
	$HoCu_2Si_2$	3,949	9,977	2,527	155,6	*
	$\mathrm{ErCu}_{2}\mathrm{Si}_{2}$	3,938	9,987	2,536	154,9	*
	$\rm TmCu_2Si_2$	3,928	9,997	2,545	154,2	*
	$YbCu_2Si_2$	3,926	9,987	2,544	154,0	*
	$LuCu_2Si_2$	3,907	10,004	2,561	152,7	*
	${ m ThCu_2Si_2}$	4,104	9,864	2,404	166,1	2,18
	$\mathbf{UCu_2Si_2}$	3,981	9,939	2,497	157,5	2
		Germanid	e RM_2 Ge ₂			
Mn	$\mathrm{Th}\mathrm{Mn_2Ge_2}$	4,084	10,930	2,676	182,3	2
${\rm Fe}$	$CeFe_2Ge_2$	4,070	10,483	2,576	173,7	*
	$GdFe_2Ge_2$	3,989	10,485	2,628	166,8	*
	$\mathrm{Th}\mathrm{Fe_2Ge_2}$	4,098	10,222	2,494	171,7	2
Co	$CeCo_2Ge_2$	4,071	10,170	2,498	168,5	*
	$GdCo_2Ge_2$	3,996	10,066	2,519	160,7	*
	$\mathrm{ThCo_2Ge_2}$	4,109	9,934	2,418	167,7	2
Ni	$CaNi_2Ge_2$	4,084	10,007	2,468	168,1	*
	$\mathrm{SrNi}_{2}\mathrm{Ge}_{2}$	4,188	10,254	2,448	179,9	*
	YNi_2Ge_2	4,043	9,763	2,415	159,6	*
	$LaNi_2Ge_2$	4,187	9,918	2,369	173,8	*
	$\mathrm{CeNi_2Ge_2}$	4,150	9,854	2,374	169,7	*
		4,15	9,84	2,37	169,5	3
	$PrNi_2Ge_2$	4,136	9,844	2,380	168,4	*
	$\mathrm{NdNi_2Ge_2}$	4,115	9,842	2,392	166,7	*
	${ m SmNi_2Ge_2}$	4,086	9,809	2,401	163,8	*
	$EuNi_2Ge_2$	4,14	10,10	2,44	173,1	3
	$GdNi_2Ge_2$	4,063	9,783	2,408	161,5	*
	$\mathrm{TbNi_2Ge_2}$	4,047	9,783	2,417	160,2	*
	$\mathrm{DyNi_2Ge_2}$	4,035	9,758	2,418	158,9	*
	$\mathrm{HoNi}_{2}\mathrm{Ge}_{2}$	4,021	9,757	2,427	157,8	*
	$\mathrm{ErNi_2Ge_2}$	4,016	9,733	2,424	157,0	*
	$\mathrm{TmNi}_{2}\mathrm{Ge}_{2}$	4,005	9,724	2,428	156,0	*
	$YbNi_2Ge_2$	4,001	9,733	2,433	155,8	*
	$LuNi_2Ge_2$	3,990	9,691	2,429	154,3	*
	$\mathrm{ThNi_2Ge_2}$	4,161	9,677	2,326	167, 5	$\frac{2}{2}$

H. 2/1969] Erdalkali- und Seltene Erdmetall-Silicide und -Germanide 449

M Zusammensetzung		a (Å)	c (Å)	c/a	V	Lit.
Cu	CaCu ₂ Ge ₂	4,139	10,232	2,472	175,3	*
	$SrCu_2Ge_2$	4,270	10,258	2,402	187,1	*
	YCu ₂ Ge ₂	4,035	10,303	2,554	167,7	*
	LaCu ₂ Ge ₂	4,215	10,170	2,413	180,6	*
	$CeCu_2Ge_2$	4,172	10,212	2,448	177,7	*
	PrCu ₂ Ge ₂	4,154	10.206	2,457	176,0	*
	NdCu ₂ Ge ₂	4.129	10.216	2.474	174.2	*
	SmCu ₂ Ge ₂	4.088	10.223	2,500	170.9	*
	GdCu2Ge2	4.057	10.248	2,526	168.7	*
	TbCu ₂ Ge ₂	4.044	10.266	2.539	167,9	*
	DyCuaGea	4.029	10.281	2.552	166.9	*
	HoCuaGea	4.016	10.302	2.565	166.2	*
	ErCuaGea	4,003	10.317	2.577	165.3	*
	TmCu2Ge2	3,994	10.307	2.581	164.4	*
	YhCuaGea	4.045	10.278	2.541	168.2	*
	ThCu ₂ Ge ₂	4,152	10,140	2.507	174.8	2

Fortsetzung (Tabelle 2)

Th Cr_2Si_2 -Typ, der jedoch in der russischen Arbeit als CeAl₂Ga₂-Typ bezeichnet wird. CeAl₂Ga₂ war die erste Verbindung mit Th Cr_2Si_2 -Typ, die von der russischen Forschergruppe gefunden wurde⁴. Die Kristallstruktur dieser Verbindung wurde unabhängig von *Ban* und *Sikirica*² ermittelt und etwa zur gleichen Zeit veröffentlicht. In CeAl₂Ga₂ besetzen die Al-Atome die 4(d)-Positionen, die normalerweise von den Übergangselement- oder Cu-Atomen eingenommen werden*.

Diskussion

Es wurde bereits von *Ban* und *Sikirica* bemerkt, daß die Struktur von Th Cr_2Si_2 eine ternäre Ordnungsvariante der BaAl₄-Struktur (Dl₃-Typ) darstellt. In der ternären Verbindung werden die zwei nicht äquivalenten Al-Punktlagen durch verschiedenartige Atome besetzt. Die Atome auf den Th-Punktlagen sind von einem tetragonalen Si-Atomprisma umgeben, während die Atome auf den Cr-Lagen sich im Zentrum von Si-Tetraedern befinden. Es sind noch zu wenige systematische Untersuchungen durchgeführt worden, um einen Überblick über die in ternären Selten-Erd-

^{*} Die Atomverteilung kann in bestimmten Fällen anders sein, wie z. B. im Fall des $CeAl_2(Al, Cu)_2$, wo die Al-Atome gemeinsam mit den Cu-Atomen die 4(e)-Lage besetzen. Wir wollen ausdrücklich darauf hinweisen, daß in allen in Tab. 2 angeführten Verbindungen die Cu-Atome die 4(d)-Lage einnehmen.

⁴ O. S. Zarechnyuk, P. I. Kripyakevich und E. I. Gladyshevskii, Soviet Phys. Cryst. 9, 706 (1965); P. I. Kripyakevich, E. I. Gladyshevskii, O. S. Zarechnyuk, V. I. Evdokimenko, I. I. Zalutskii, und D. P. Frankevich, Soviet Phys. Cryst. 8, 477 (1964).

H. 2/1969] Erdalkali- und Seltene Erdmetall-Silicide und -Germanide 451

Binärer Pr seiner Rau	ototyp mit mgruppe	Beispiel	
	A. Teil	weise geordnete teri	näre Verbindungen
AlB_2	P6/mmm	${f Ce(Cu_{0,67}Ge_{1,33})}\ La(Cu_{0,5}Si_{1,5})\ Ce(Ni_{0,5}Si_{1,5})$	Rieger und Parthé ⁵ Raman ⁶ Gladyshevskii und Bodak ⁷
\mathbf{ThSi}_2	$I4_1/amd$	$\mathrm{Er}(\mathrm{Cu}_{0,5}\mathrm{Si}_{1,5})$	Raman ⁶
$CeCu_2$	Imma	$\mathrm{Er}(\mathrm{Ni}_{1,0}\mathrm{Ga}_{1,0})$	Dwight ⁸
$MgZn_2$	$P6_3/mmc$	$Sc(Cu_{1,0}Al_{1,0})$	Teslyuk und Protasov ⁹
\mathbf{CrB}	Cmcm	${ m Er}({ m Ni}_{0,75}{ m Si}_{0,25})$	Raman ¹⁰
	B. Vollko	mmen geordnete te	rnäre Verbindungen
$\mathrm{Th}_2\mathrm{Ni}_{17}$	$P6_3/mmc$	$Ce_2[Ni_{15}Si_2]$	Gladyshevskii, Kripyakevich und Bodak ¹¹
BaAl ₄	I4/mmm	$f Y[Cu_2Si_2] \ Ce[Ni_2Si_2]$	Diese Arbeit Bodak, Gladyshevskii und Kripyakevich ³
${ m Th_6Mn_{23}}$	Fm3m	G-Phasen Sc ₆ [Ni ₁₆ Si ₇] Tm ₆ [Ni ₁₆ Si ₇]	Dwight, Conner und Downey ¹² Gladyshevskii, Kripyakevich, Kusma und Teslyuk ¹³
Ca ₃ Ag ₈	Im3m	Ce ₃ [Ni ₆ Si ₂]	Gladyshevskii, Kripyakevich und Bodak ¹⁴
${ m Ti}_5{ m Ga}_4$	$P6_3/mem$	$Ce_5[CuSn_3]$	Rieger und Parthé ¹⁵
$\rm Fe_2P$	Pē 2m	[CeAl]Ni	Dwight, Mueller, Conner, Downey und Knott ¹⁶

Tabelle 3. Binäre Prototypen und deren ternäre Abkömmlinge, die bei Selten-Erd-Siliciden und verwandten Verbindungen vorkommen

⁵ W. Rieger und E. Parthé, Mh. Chem. 100, 439 (1969).

⁶ A. Raman, Naturwiss. 54, 560 (1967).

⁷ E. I. Gladyshevskii und O. I. Bodak, Dopov. Akad. Nauk USSR, 601 (1965).

⁸ A. E. Dwight, Proc. of the 6th Rare Earth Research Conf., Gatlinburg, May 1967, page 156.

⁹ M. Yu. Teslyuk und V. S. Protasov, Soviet Phys. Cryst. 10, 470 (1966).

¹⁰ A. Raman, Inorg. Chem. 7, 973 (1968).

¹¹ E. I. Gladyshevskii, P. I. Kripyakevich und O. I. Bodak, Z. anorg. allgem. Chem. **344**, 95 (1966).

¹² A. E. Dwight, R. A. Conner und J. W. Downey, Nature 197, 587 (1963).

¹³ E. I. Gladyshevskii, P. I. Kripyakevich, Yu. B. Kusma und M. Yu. Teslyuk, Soviet Phys.-Cryst. 6, 615 (1962).

¹⁴ E. I. Gladyshevskii, P. I. Kripyakevich und O. I. Bodak, Acta Cryst. 21, part 7, page A 80.

¹⁵ W. Rieger und E. Parthé, Mh. Chem. 99, 291 (1968).

¹⁶ A. E. Dwight, M. H. Mueller, K. A. Conner, J. W. Downey und H. Knott, Transact. AIME —, Nov. 1968. systemen auftretenden Strukturtypen und die Zusammenhänge zwischen diesen zu gewinnen. Aus den bisher bekannten Arbeiten kann man aber erkennen, daß die meisten der vorkommenden Strukturtypen ternäre Abkömmlinge binärer Strukturtypen sind. Eine Zusammenstellung der binären Prototypen und der davon abgeleiteten ternären Strukturtypen, die teilweise oder vollständig geordnet sein können, ist in Tab. 3 gegeben.

Kürzlich haben wir¹⁷ darauf hingewiesen, daß eine zweckmäßige Darstellung des elektronischen Zustandes der Selten-Erdelemente in ihren Verbindungen mit Hilfe von Diagrammen erfolgen kann, in denen die Kubikwurzel des Formeleinheitsvolumens (hier als L bezeichnet) gegen die Radien der Selten-Erdionen im dreifach positiv geladenen Zustand aufgetragen wird. Im linken Teil der Abb. 2 sind die L-, a- und c-Werte der RNi₂Si₂- und RNi₂Ge₂-Verbindungen auf diese Weise dargestellt, während im rechten Teil die RCu₂Si₂- und RCu₂Ge₂-Verbindungen behandelt sind. Das Verhalten der Silicide und Germanide ist im allgemeinen gleich, jedoch nicht das der Cu- und Ni-Verbindungen. Ein Studium der Abb. 2 läßt erkennen, daß die Verbindungslinien der L-, a- und c-Werte negative Abweichungen von einem angenähert linearen Verlauf für die Cer-Nickel-Verbindungen zeigen. Diese Abweichungen treten bei den entsprechenden Cu-Verbindungen des Cers nicht auf. Dagegen zeigen die L-Werte für Ytterbium größere positive Abweichungen bei den Verbindungen mit Cu als bei denen mit Ni. In diesem Zusammenhang ist es interessant, die bekannten Gesetzmäßigkeiten für die Abweichungen der L-Werte bei den binären Ce-, Eu- und Yb-Verbindungen zu betrachten. Kripyakevich⁴ und Mitarbeiter haben 1964 festgestellt, daß die Abweichungen von der Periodensystemgruppe des Legierungspartners abhängen. Legierungspartner von der rechten Seite des Periodensystems, wie Cu, Zn, Ga oder Ge bewirken normales Verhalten mit Ce-, jedoch positive Abweichungen mit Eu- und Yb-Verbindungen. Legierungspartner von der linken Seite des Periodensystems, wie Ni, Co oder Fe, bewirken jedoch negative Abweichungen mit Ce- und normales Verhalten mit Euund Yb-Verbindungen. In den hier untersuchten ternären Legierungen finden wir ganz entsprechende Regelmäßigkeiten. Sind beide Legierungspartner von der rechten Seite des Periodensystems, wie bei RCu₂Ge₂, dann gibt es keine Abweichung für Ce-, jedoch positive Abweichungen für Yb- und (vermutlich) Eu-Verbindungen. Ist eine Komponente von der linken und die andere von der rechten Seite, wie bei RNi2Ge2-Legierungen, so treten Abweichungen sowohl bei Ce- als auch bei Euund Yb-Verbindungen auf. Die Tendenz der c-Parameter ist bei den Ni-Verbindungen fallend, bei den Cu-Verbindungen dagegen steigend.

¹⁷ E. Parthé, in "Propriétés thermodynamiques, physiques et structurales des dérivés semi-métalliques". Paris: Editions du CNRS, page 195 (1967).

H. 2/1969] Erdalkali- und Seltene Erdmetall-Silicide und -Germanide 453

Ein Vergleich der Abweichungen für Europium kann nicht durchgeführt werden, da nur die Ni-Verbindungen bekannt sind. Die großen Abweichungen bei Europium lassen jedenfalls darauf schließen, daß dieses

Abb. 2. Gitterparameter und L-Werte (mittlerer Gitterparameter) der ternären Nickel- und Kupfer-Silicide und -Germanide als Funktion der Radien der dreifach positiv geladenen Selten-Erdatomionen

Metall wesentlich weniger Elektronen abgibt als die anderen Seltenen Erden. Die Bildung des Th Cr_2Si_2 -Typs wird aber dadurch offenbar nicht beeinflußt, was ja auch durch die Existenz von isotypen Ca- und Sr-Verbindungen erhärtet wird. Daß das Größenverhältnis der Atome dagegen für die Ausbildung dieses Strukturtyps wichtig ist, ergibt sich aus der Tatsache, daß einerseits keine Barium-Verbindungen gefunden wurden, da Barium offensichtlich zu groß ist, und daß andererseits Lutetium und Scandium wegen ihrer kleinen Radien keine Verbindungen mit Ge und Cu bilden. Desgleichen läßt sich Cu nicht durch Ag, und Ge nicht durch Sn oder Pb ersetzen. 454 W. Rieger u. a.: Erdalkali- u. Seltene Erdmetall-Silicide u. -Germanide

Das gesamte experimentelle Material deutet darauf hin, daß die Ausbildung des Th Cr_2Si_2 -Strukturtyps nicht an einen bestimmten Valenzelektronenbereich gebunden ist. Ähnlich ist es für die anderen der in Teil B von Tab. 3 angeführten geordneten ternären Strukturtypen. Hingegen werden Zusammenhänge zwischen Auftreten eines Strukturtyps und einer bestimmten Valenzelektronenkonzentration bei den in Teil A der Tab. 3 angegebenen Strukturtypen mit ungeordnetem Gitter der Legierungspartner des Selten-Erdmetalls gefunden. Darüber soll in einer gesonderten Abhandlung berichtet werden.

Diese Arbeit wurde unterstützt von der Advanced Research Projects Agency, Office of the Secretary of Defense.

¹⁸ J. Nickl und H. Sprenger, Naturwiss. 54, 248 (1967).

¹⁹ O. E. Skolosdra, R. V. Skolosdra und E. I. Gladyshevskii, Neorg. Mater. **3**, 813 (1966).